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We give some properties of a new class of hard-sphere kinetic equations of great 
generality, introduced earlier by Polewczak. The assumptions used to obtain the 
general class are very weak, and the equations include not only the standard 
and revised Enskog equations, but also generalizations thereof that can be 
expected to yield essentially exact transport coefficients. In particular, there is a 
natural two-particle realization that is obtained from maximizing the informa- 
tion entropy subject to prescribed two-particle and one-particle probability dis- 
tribution functions; k-particle analogs for k > 2 also naturally follow. We obtain 
Liapunov functionals for the whole class of equations under consideration and 
discuss the question of which of these functionals can be expected to play the 
role of H-functions. We also obtain several more special results that include new 
lower bounds on the potential part of the H-function for the revised Enskog 
equation. The bounds are instrumental in obtaining global existence theorems 
and also imply that the necessary condition for invertibility of the non- 
equilibrium extension of local activity as a functional of local density is satisfied. 

KEY WORDS: Kinetic theory; entropy; H-theorem; local H-theorem; 
hard-sphere fluid; BBGKY hierarchy; Enskog equation. 

1. I N T R O D U C T I O N  

In  this w o r k  we give s o m e  new p rope r t i e s  of  a class of  h a r d - s p h e r e  k ine t ic  

e q u a t i o n s  of  e x t r e m e l y  genera l  f unc t iona l  f o r m  i n t r o d u c e d  recent ly  by 

P o l e w c z a k J l !  Specia l  cases inc lude  the  s t a n d a r d  E n s k o g  e q u a t i o n  a n d  

rev ised  E n s k o g  e q u a t i o n ,  which  have  p r o v e d  to yield e x t r e m e l y  useful  
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approximations, but also include a class of much broader equations in 
which the pair correlation function 

f2(t, rl, Vl, r2, /)2) 
G =  

A(t, r~, ~1)fl(t,  r2, ~2) 

for "impact" states is assumed to depend upon velocities vl and v2 (as well 
as r 1 and r2) in a very general way. (We are using standard notation 
here--see below for precise definitions.) The generality appears to be suf- 
ficiently great to include fz's that would yield essentially exact transport 
coefficients. 

We exhibit Liaponov functionals F(t) for a class of equations (we call 
them generalized Enskog equations) considered by us. These functionals, 
defined on sets of nonnegative solutions D c L 1, are monotone functions of 
time, whose stationary points determine possible equilibria of the system 
governed by the generalized Enskog equation. Although in the study of 
asymptotic stability one usually needs some type of continuity of F(t): 
D ~ L  ~, we do not require this property here. In the cases of the 
Boltzmann and for a class of equations that approximate the revised 
Enskog equations as a limit (see Theorem 1 of Section 4) corresponding 
F(t) are lower semicontinuous in the weak topology of L 1. For  our 
purposes a different assumptions on F, namely its lower bound, plays an 
important role in obtaining the estimation [see (39) of Section 4] that 
implies the weak compactness argument in L l, so crucial in existence 
theorems for the generalized Enskog equations. In addition, when a lower 
bound is uniform for t e [0, Go), the above weak compactness argument 
determines a weakly compact set of L ~ that (formally at least) plays a role 
of a global attractor for the system, i.e., an absorbing bounded set which 
all solutions enter as t--* oc, whatever an initial value is. As we shall 
discuss, this appears to be a case for which the Liapunov functional F(t) 
becomes an H-function for a generalized Enskog equation. In Section 4 we 
study cases for which one can show existence of a lower bound for F. 
Among various results of Section 4, we obtain new lower bounds for the 
potential part of the H-function for a class of equations that approach the 
revised Enskog equation as a limit. As shown in ref. 3, these bounds are 
also important in demonstrating that the necessary condition for inver- 
tibility of z(t, r), the nonequilibrium extension of the activity, in terms of 
local density is satisfied. In Section 5 we obtain a local version of F which, 
in the cases in which F is an H-function, can be considered as an analog 
of the local H-theorem. 

We consider a fluid consisting of hard spheres of diameter a and mass 
m in an external field F/m and in a spatial domain ~ ~_ R 3. The external 
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field F/m is assumed to be a smooth function of the spatial variable only. 
Within the context of (exact) kinetic theory the state of the fluid depends 
upon (among other things) the one-particle distribution function 
f l ( t ,  r~, v~), which changes in time due to free streaming and collisions. 
f l ( t ,  rm, Vl) represents at time t the number density of particles at point rl 
with velocity v~. When two particles with positions at rl and r2 collide, 
their velocities v~, v2 take postcollisional values 

V'1 = Vl - -  ~(G, U1 -- /)2) , 1)t2=U2+F.(C,,UI--U2) 

Here, ( - , . )  is the inner product in R 3, and e is a vector along the line 
passing through the centers of the spheres at the moment of impact, i.e., 
e~S2+ = {eeR3: lel = 1, ( v l - v 2 ,  2)~>0}. The exact rate of change of the 
distribution f l ( t ,  r 1, v~) is given by the equation 

afl + v  afl . C3fl 
a--7 - ~ r l + F / m ~ v l = f f  d r z d v 2 K 1 2 f 2 ( t ' r l ' v l ' r 2 ' v 2 )  (la) 

where 

K12f2 = a 2 ~ [f2(t, rl ,  v'l, r2, v'2) 6(rl - r2 - ae) 
Js 

- f2(t,  r l , v l , r 2 ,  v2) 6 ( r l - r 2 + a e ) ] ( e ,  v i - v 2 ) d e  (lb) 

The density of pairs of particles in collisional configurations is described by 
the two-particle distribution function f2. Expressions for the f ,  are given 
and discussed in terms of open and closed systems near the end of 
Section 3. We note that in the case of the gas considered in a spatial 
domain s ~ R 3, Eq. (la) with (lb) needs to be supplemented with suitable 
boundary conditions. 

Equation (la) with (lb) is one way of writing the exact first BBGKY 
hierarchy equation for a hard-sphere system, for which the matching 
condition 

f2(  t, r l '  191, /'2, U~))=f2( / ,  r l ,  /9I' / '2' /32) (2) 

is satisfied for all vl, v2 and rl, r2 with [ r l -  r21 = a +, where v] and v~ are 
post collisional velocities. The matching condition is typically lost when 
one introduces an approximate f2 into (la) and (lb), which become irre- 
versible. The usual way of introducing an approximate f2 is by expressing 
it as a functional of f~ that is assumed to be independent of boundary 
conditions. For our purposes it is convenient to do this by first writing f2 
in the form 

f2(t, rl ,  v l , r2 ,  v2 )=G( t ,  r l , v l ,  r2, v2) f l ( t ,  rl, v l ) f l ( t ,  r2, v2) (3) 
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We observe next that f2 and hence G enters the kinetic equation only for 
arguments that characterize the precollisional conditions of binary 
hard-sphere impact, i.e., for rl2 ~ Irl - r2k = a + and (vl - v2, ~) ~> 0. This is 
obvious for the second f2 in (lb). The first f2 is evaluated for primed 
velocities, but at r2 = r l -  ae, which makes it "precollisional" also. We shall 
denote G for such precollisional variables as Y. 

The way in which one approximates the exact two-particle correlation 
function G at impact gives rise to the different kinetic equations found in 
the literature. The Boltzmann equation is obtained by assuming that Y-- 1 
and that the change of f l(t ,  r i, vi) over a length a for arbitrary t and vi is 
negligible, so that f~(t, ri, v~)~f~(t, ri + ae, vi). This rather trivial choice for 
Y is adequate in the dilute-gas limit. For more general Y, the dilute-gas 
limit is achieved when Y ~  1. In the homogeneous case (fl  does not 
depend on a position) Y ~  1 is implied by na 3 ~ 0 .  In nonhomogeneous 
situations, however, Y ~  1 is implied by the local mass estimate 

fB n ( t , z ) d z ~ O  for r~s 
(r,~) 

where 
( ,  

n(t, r) = ! f l ( t ,  r, v) dv 
J R 3 

B(r, a ) =  {z ~ s [ z -  r I 4 a} and s is a spatial domain defined in Section 2. 
We observe that in the homogeneous case the local mass estimate is 
equivalent to n a  3 ~ O. 

An interesting generalization of Boltzmann's equation (in principle 
adequate to describe the dilute-gas limit no matter how rapid is the spatial 
change in f~, and hence in n, on the length scale of particle diameter) 
follows from making only the assumption Y - 1 .  In the literature this 
model is found under the name of the Boltzmann-Enskog equation. 

In the standard Enskog theory (SET), (4) Y is given by 

ySET(t, r l , r 2 ) = g ( a +  n ( t , ~ ) )  (4) 

where n(t, r) is the local density, and g(r12 I n) is the pair correlation func- 
tion at particle separation r12 in a uniform equilibrium state at density n. 
In the revised Enskog theory (RET), (5'6) Y is taken to be the "contact 
value" of the pair correlation function g for a nonuniform system at equi- 
librium with local density n(r) in which the correlations depend upon n(r) 
and the excluded volume of the spheres. In particular, there are no correla- 
tions between velocities in the system. In this case one can write 

yRET(t, rl,  r2)= g ( r l ,  r 2 ] n(t, "))]r~2_~+ (5) 
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The term "revised" points to the fact that in the revised Enskog equation 
g describes correlations of a nonuniform rather than a uniform equilibrium 
state, so that g(rl, r2 I n(.)) is a functional of n(rl) rather than simply a 
function of the uniform density n. In terms of the formal Mayer cluster 
expansion, g has the form (11~ 

g(q,  r= In(t, .)) 

=012 1+ ~ 3 ( k _ 2 )  ! =  dr3-"  drk n(3 ) . . .n(k) V(12 I 3 . . .k )}  (6) 

where n(k)=n(t ,  r~), V(12 I 3 . . . k )  is the sum of all graphs of k labeled 
points which are biconnected when the Mayer factor/12 = 0 1 2  - -  1 is added, 
012=O(Lr l - r21-a ) ,  and O is the Heaviside step function. The O is a 
spatial domain defined in Section 2. 

Finally, following the work of Polewczak, (1) one obtains a new major 
generalization of the above models by allowing velocity dependence on vl 
and v2 in Y. In this case Y is considered to be of the form 

Y -  Y(t, r l ,  /)1' r2, v2 I All) (7) 

In (7), for each fixed t~> 0, A indicates an operator, possibly nonlinear, 
acting on f l ,  and f Afl denotes the functional dependence of Y on Afl. We 
observe that the form of Y in (7) is general enough to include possible 
functional dependence on f l  for times prior to t. Typically, A represents 
one or more velocity moments of f l  [although spatial moments are not 
excluded in (7)], e.g., the zeroth moment in the cases of the SET and the 
RET (Afl = n). We will assume throughout the paper that Y is nonnegative 
for f~>0, and that for a fixed but otherwise arbitrary t, Y satisfies the 
following symmetry restriction: 

Y is symmetric u n d e r  r 1, v I ~ r2,  v 2 ( 8 )  

This is precisely the property (8) that is responsible for the existence of a 
Liapunov functional in the case of the generalized Enskog theory (GET), 
i.e., Eq. (la) with (lb) with the closure relation (3) and Y as in (7). This 
functional has the property dF(t)/dt <<. O, but, in general, this is not enough 
to imply an approach to true equilibrium. (See the remarks in the first 
paragraph of Section 4). By recalling the definition of the unit vector e, we 
note that (vl - v2, e)  ~> 0 itself is invariant under the exchange of variables 
rl,  vl ~ rz, v2. Furthermore, the restrictions in (8) under which Y is sym- 
metric are precisely the conditions that are satisfied at the moment of the 
impact and already used by us in the closure relation (3). We note that in 
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a pioneering paper, the authors of ref. 24 considered an Enskog equation 
modified by the inclusion of a velocity-dependent correlation function in 
the collision integral. They did not focus on an H-theorem or related issues, 
however, and in ref. 24 their main concern was a computation of a correc- 
tion to the transport coeffiients due to the inclusion of a velocity-dependent 
correlation function. They approximated Y by a linear-in-velocities pertur- 
bation of ySZT. 

In general, the exact impact value of G has a functional form that 
depends upon initial conditions for the ensemble as well as upon t, r~, Vl, 
r2, v2, and f l .  When Eq. ( la)  with ( lb)  is used to obtain the usual trans- 
port coefficients, however, one can assume that memory of the initial con- 
ditions is negligible, by definition of the usual transport coefficients. We 
believe that (7) represents a sufficiently general ansatz so that it includes 
Y's that will yield transport coefficients arbitrarily close to exact ones. In 
this paper, and in a companion study (2s~ of k-particle kinetic equations, 
k/> 2, we discuss an example of a GET that goes beyond the RET and 
yields a Y of the form given in (7) (see the remarks at the end of Section 3). 
The GET serves as a formal scheme that appears to embrace all current 
variants of approximate hard-sphere kinetic equations for f~ in which 
quantitative evaluation of such coefficients is tenable. 

2. BASIC PROPERTIES OF THE GET 

2.1. The Collision Invariants 

The generalized Enskog equation, i.e., Eq. ( l a ) - ( lb )  with the closure 
relation (3), Y as in (7), and f l  replaced by f ,  can be rewritten in the form 

O-f+vO~f +F/mOf E ( f ) - E + ( f ) - E  (f) (9) 
~Tt 6 r  

with 

E+(f)=a2ff  Y(t,r,v' ,r-ae, w' lAf)  
R 3 • $2+ 

• f(t, r, v')f(t, r-ae, w')(e, v - w )  dedw 

ffR Y(t 'r 'v 'r+as 'wbAf)  E ( f )=a  2 3• 

• f(t, r, v)f(t, r+ae, w)(e, v - w )  dedw 

Here, v', w' are the velocities after the collision given by 

v ' = v - e ( e , v - w ) ,  w ' = w + e ( e , v - w )  

(9a) 

(9b) 
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The first property of E ( f )  is an analog of the corresponding identity for the 
Boltzmann collision operator. Property (8) of Y implies that for 
measurable on s x R 3 and f e  Co((2 • R 3) we have 

f f •  • R~ ~(r, v) E ( f )  dv dr 

= g a  • R3• R3• s2+ [ t~(r ,v ' )+O(r+ae,  w ' ) - -O( r , v ) - -O( r+ae ,  w)] 

x f ( t ,  r, v) f ( t ,  r +ae, w) 

x Y(t, r, v, r+ae,  w rA f ) ( e ,  v - w }  & d w d v d r  (10) 

We notice that in contrast to the case of the Boltzmann collision operator, 
for identity (10) to be true we had to integrate over position domain 
t2_cR 3. For  simplicity, we consider here two cases of spatial domains: 
(2= R 3 and a three-dimensional torus, i.e., t-2 = R 3 / Z  3. The first case (the 
whole-space problem) will be always considered for systems with finite 
mass and energy, thus making it different from systems in the whole R 3 
which are perturbations from equilibrium near the origin. The second case 
corresponds to a spatial domain with periodic boundary conditions. 

We remark that, because ~3 ~ E ( f ) d v  r 0 for ~ = v and ~ = v 2, the 
fluid obtained from the GET (including the SET and the RET) does not 
obey the law of an ideal fluid p = nkT, in contrast to the fluid obtained 
from the Boltzmann equation. 

Identity (10) raises the following question: What is a general solution 
~(r, v) in the class of measurable functions on s x R 3 to the functional 
equation 

if(r, v') + ~(r + ae, w') = if(r, v) + ~(r + ae, w) 

forall  r ,v ,w,  ewi th  @ , v - w } ~ > 0  (11) 

subject to the boundary conditions correspoding to the spatial domains? 
The answer is known at least for the cases of spatial domains considered 
above (see ref. 6, pp. 604-605, for a formal proof): 

t~(r, v) = h(r) + (C1, v} + C2v 2 (12) 

where h(r) is an arbitrary measurable function defined on (2, C1 is a 
constant vector, and C2 is a scalar constant. Whether this is true for more 
general boundary conditions is not clear. Presumably, solutions ~ must be 
consistent in some sense with given boundary conditions. 
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2.2. The  Liapunov Funct ionals  

For f a nonnegative solution of the generalized Enskog equation, we 
define 

If,• ~' I(s)  ds (13) F ( t ) =  • 3 f ( t ' r ' v )  l ~  

where 

I(t) 1 2 JJJJs'2 t = 2a [f( t ,  r -- ae, w) Y(t, r, v ,  r - ae, w' •215215 I Af) 

-- f ( t ,  r + ae, w)  Y( t ,  r, v, r + ae, w I A f ) ]  

• f ( t , r , v ) ( e , v - w ~ d e d w d v d r  

Now, multiplying the generalized Enskog equation by 
integrating over (r, v) E s x R 3, we have 

dF  
fro E ( f ) l o g f  d v d r - I ( t )  (15) 

dt • R3 

Next, using (10) with q/ = l o g f  together with the inequality 
y(log y - log z) ~> y - z for y, z > O, we obtain 

dF  
d~-~<O (16) 

(14) 

1 + tog f and 

The above inequality shows that F(t)  is a Liapunov functional for the 
problem. Furthermore, as stated in Section 1, when one knows that F(t)  
has a lower bound (uniform for t e  [0, oe)), the monotonicity of F(t)  that 
follows from (16) makes F(t)  a candidate of an H-function for the GET. 
Indeed, as demonstrated in Section 4 [see (39)], for any solution f of 
Eq. (9), the uniform lower bound of F(t)  implies the relative weak 
compactness of the orbit {f(t): 0 ~< t < oe } in L 1, thus showing that, in 
principle at least, the minimum of F(t)  (as t - . m )  can be attained. 
Furthermore, the stationary points of F(t)  are the only minima 
corresponding to possible equilibria of the system. 

We stress that, in general, F(t)  depends on the past of the system 
governed by Eq. (9). This is in contrast to the H-functions for the 
Boltzmann as well as the revised Enskog equations, which are functionals of 
quantities that characterize macrostates at the time t only, i.e., functionals 
of f itself, and of velocity moments (although, in general, spatial moments 
are not excluded), evaluated at time t. This last condition together with 
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the monotonicity constitutes the requirements usually imposed on any 
H-function. The following interesting problem arises: what relations exist 
between existence of a lower bound for F( t )  (uniform in t ~ [0, ~ ) )  and a 
possible representation of F ( t )  in terms of quantities describing macrostates 
only at time t? In the case of a set of Y's which approach the RET's as a 
limiting result, Theorem 1 of Section 4 shows that F ( t )  is a functional of 
such quantities only and in the above limiting case reduces to the entropy 
functional discussed by R6sibois (6) and others35's) 

We point out that Y in the SET [i.e., Y given as in (4)] satisfies sym- 
metry condition (8), thus showing that the SET has a Liapunov functional. 
Except in the case of vacuum solutions (see the case 5 of Section 4), which 
describe the gas escaping from R 3 as t--* oo, and hence with no proper 
equilibria, the problem of existence of a uniform lower bound for F( t )  in 
the SET is open, however. We note also that there have been several 
attempts to find an entropy functional for the SET. Hubert  (9) indicated that 
an H-theorem can be proven for a limited class of functions corresponding 
to the thermodynamic regime [see the formula (68), p. 89 of ref. 9]. 
Grmela and Garcia-Colin (1~ investigated the role of the symmetric and 
antisymmetric parts of the standard Enskog collision operator in defining 
a possible entropy functional. The symmetric and antisymmetric parts were 
also studied in ref. 9. Neither of these results, however, showed the 
existence of an H-function for the full collision operator. 

Another Liapunov functional can be indicated in the whole-space 
problem (i.e., when s = R 3) and in the absence of an external field ( F - 0 ) .  
Multiplying the equation by ( r -  tv) 2, integrating by parts over r e R 3, and 
using (10) with ~ = ( r - t v )  2 along with the equality 

(r - iv ')  2 + (r + ae - tw' )  2 

= (r - tv) 2 + (r + ae - tw) 2 - 2a t ( e ,  v - w )  (17) 

for r, v, w ~ R  3, t e R ,  a > 0 ,  e e S 2 + ,  and v', w' postcollisional velocities, we 
obtain 

d f f R 3 •  f ( t , r , v ) d v d r  

= --a3tff f fR3xR3xR3xS2+ (e ,  1 ) - - W )  2 Y(t ,  r, v, r + a e ,  w l A f )  

x f ( t ,  r, v) f ( t ,  r + ae, w)  de dw dv dr (18) 

In view of (18), the functional defined by 

e( t )  = f f  R3xR3 ( r - t v ) 2 f ( t , r , v ) d v d r  (19) 
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also indicates dissipativity of the system. In the case of the Boltzmann 
equation one has g ( t ) = g ( O )  for all t e R .  We observe that dg(t ) /d t<O 
only for positive t and nonnegative f. In addition, since identity (17) is true 
only for the whole-space problem, g(t)  may not be nonincreasing in the 
case of bounded spatial domain with appropriate boundary conditions. 
Finally, since g( t )  is decreasing for all times, we see that solutions of the 
generalized Enskog equation for the whole-space problem cannot approach 
an absolute Maxwellian. 

3. E Q U I L I B R I U M  S O L U T I O N S  IN T H E  GET 

In spite of the fact that the exact form of the two-particle correlation 
function is unknown, symmetry property (8) is sufficient to describe the 
family of all possible solutions for which dF(t)/dt = 0. Indeed, using the fact 
that y(log y - l o g  z ) = y - z  iff y =z,  the above family of solutions is 
characterized by the equality 

f ( t ,  r, v ' ) f ( t ,  r + aa, w ' )=  f ( t ,  r, v ) f ( t ,  r + aa, w) (20) 

for all r, v, w, and e such that (e, v -  w)~> 0. As pointed out by R6sibois, (6) 
the last condition can be relaxed. Following the analysis in ref. 6 together 
with the requirement that f ( t ,  r, v) be integrable with respect to v, we 
obtain that the equality (20) is satisfied if and only if 

f ( t ,  r, v )=n( t ,  r)[fl(t)m/2~z] 3/2 exp{ - f l ( t ) m E v - u ( t ) ] 2 / 2 }  (21) 

where u(t) is the fluid velocity and fi( t)= 1/kBT(t), with T(t) the fluid 
kinetic temperature. We observe that the form of f in (21) is independent 
of the choice of Y in (7), and is very different from local equilibrium solu- 
tions of the Boltzmann equation, for which u and fl can be functions of 
positions. In the case of the Boltzmann equation the H-function is constant 
in time if and only if the solution has the form 

f ( t ,  r, v )= n(t, r)[fi(t, r)m/2n] 3/2 exp{-f l ( t ,  r ) m [ v - u ( t ,  r)]2/2} (22) 

An example of a solution to the Boltzmann equation in the absence of 
external forces of the form (22) (albeit one that appears to lack physical 
significance) is given by 

f ( t ,  r, v) = c exp[ - b ( r  - tz))2], for some positive constants c and b (23) 

As is well known, such solutions produce on the hydrodynamic level flows 
governed by the nondissipative Euler equations of fluid dynamics. The 
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thermodynamic entropy of such systems, if it exists, does not change in 
time, this being consistent with the fact that on the kinetic level the 
H-function is constant. 

Next we want to analyze the form of solutions to the SET and the 
RET satisfying (21). By substituting f from (21) in the generalized Enskog 
equation with Y given by 

Y =  Y(rl, r2 in(t)) (24) 

such that condition (8) is satisfied, we obtain (after integrating with respect 
to w and e in the collision operator and comparing coefficients of various 
powers of v) 

M ~3~=0 (25) 

~?logn flmau 2 
k fl(u,F) at 2 at 

l fc~O(lr-r2l-a) y(r, r2ln(t))n(t, rz) dr21 (26) - - a  2 u, ~r  

a logn  Ou fOO(lr-r2l -a)  
c~---7 + tim -~7 - fir= a2 J c~r Y(r, r 2 I n(t)) n(t, r2) dr 2 

(27) 

where F/m is an external force acting on the system and O is the Heaviside 
step function. Equations (26) (27) imply the continuity equation 

a log n a log n 
- - + u  = 0  (28) 

& 0r 

We observe that Eq. (27), for a fixed t, is similar to the first equation of 
the Born-Green-Yvon equilibrium hierarchy with the external force field 
tim au/&-flF (see, for example, Chapter 6, Section 33 of ref. 26). This 
is due to the fact that for hard-sphere potentials the Mayer function 
appearing in that equation is equal to O(Ir l - r z ] -a ) -1 .  In the case of 
the RET, i.e., for Y given by (5), Eq. (27) is precisely the Born-Green- 
Yvon equation. 

Solutions of (26) can be expressed in the form 

n= ~(r) exp ( ~ -  u( t) 2 

-- ff tu(s)'flF+a2faO(lr--r2l--a)y(r'r='n(s))n(s'r2)dr2) 

(29) 
where ~(r) is a function of position only. 
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From (21) in the general case of GET or from equations (25)-(29) in 
the cases characterized by Y given in (24), we conclude that solutions for 
which a generalization of the H-function is constant are different from solu- 
tions obtained under this condition in the case of the Boltzmann equation. 
Furthermore, the status of the Chapman-Enskog method, which is used to 
obtain the Navier-Stokes equations and higher-order approximations in 
the case of the Boltzmann equation, is not entirely clear to us in the case 
of the GET (including the SET and the RET). A crucial property of the 
Boltzmann collision operator Q ( f ) ,  which is used in the Chapman-Enskog 
method, is the fact that Q ( f )  = 0 if and only if f is of the form given in 
(22). (This is also the only form of the distribution function f for which 
Boltzmann's H-function can satisfy dH/dt  = 0.) This property is certainly 
not true in the case of the GET. In fact, except in the trivial case of (21) 
with n( t , r )  being constant, E ( f ) r  In order to make use of the 
Chapmann Enskog method one is forced to expand further the collision 
operator, corresponding to the SET or the RET, in terms of as. This can 
be justified when the diameter of hard spheres a ~ 0. From this, and the 
fact that, as in the case of the Boltzmann equation, the Chapman-Enskog 
method can be justified asymptotically as the Knudsen number Kn --* O, we 
conclude that in the case of GET, the Euler equations can be obtained 
through the Chapman-Enskog method when both the Knudsen number 
Kn and the diameter a of hard spheres converge to zero. This fact alone 
introduces various possibilities. Indeed, we can have Kn-~  O, a--* 0, and at 
the same time, a ,,~ (Kn) p for various p ~> 1. Presently, one can provide a 
rigorous proof (33/ of the asymptotic convergence of the solutions of the 
Enskog equation (with Y bounded) to a local maxwellian when Kn-- ,0 ,  
a ~ 0, and a <~ (Kn) p for p ~> 1. Large values of p imply that the diameter 
a is very small compared to the Knudsen number K n ~ l ,  where l is a 
measure of the mean free path. In other words, we are in the range of the 
dilute-gas limit, where the asymptotic analysis can already be developed on 
the basis of the Boltzmann equation, rendering a GET analysis of limited 
interest. In the case of the GET (including the SET and the RET), the 
physical problem of interest requires the study of the asymptotic con- 
vergence in the limit a ~ O, Kn ~ O, when the diameter a and the Knudsen 
number Kn are of the same order, i.e., for p ~  1. At present time, the 
authors are not aware of any compelling arguments, even on the formal 
level, that provide a resolution of the above problem. 

If equilibrium solutions to the problem exist, they can be obtained 
from Eqs. (25)-(27). Indeed, in this case F cannot depend on time, thus 
giving equilibrium solutions in the form (21) with u = 0,/3 = const, and n(r) 
determined by Eq. (27). In the case of the RET, density n(r) is of the form 
required by equilibrium statistical mechanics [Eq. (27) is the first Born-  
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Green-Yvon equation; see ref. 12 for more details]. In general, the specific 
form taken by Y in Eq. (27) when Y is velocity dependent depends upon 
the level of approximation being used. An important class of Y's can be 
provided by the two-particle kinetic theory [-see ref. 8, Eq. (63)], where a 
closure relation this time is supplied for the three-particle distribution 
function 

f3(t, xl, X2, X3) 

f2(t, Xl, x2) f2(t, Xl, x3) f2(t, X2, X3) 
= G~(t ,  x~,  x~ ,  x~),  x ,  = (r , ,  v,)  

A(t, xi) fl(t, x2) fl(t, x3) 
(30) 

Different choices of G3 in the above closure relation give rise to different 
Y's in the following way. Equation (30) can be used in the second BBGKY 
equation to yield an f2 which can then be used in ( la ) - ( lb)  to yield an f l .  
The resulting fz(t, rl, Vx, r2, v2)/fx(t, rl, vl) fl(t, r2, v2) defines a Y via (3). 
Among potentially interesting choices of G3, several stand out as 
particularly natural. The simplest is G3-= 1, which corresponds to the 
Kirkwood superposition approximation (KSA). (24) A very natural choice in 
terms of the BBGKY hierarchy is to let the function G3 at an "impact con- 
figuration" be given by the same functional off1 and f2 that it is in the case 
of equilibrium. (The equilibrium G~ was some time ago shown by Stell (27) 
to be a functional of f l  and f2 that has a formal series representation in the 
grand ensemble in terms of at-least-triply-connected clusters integrals. In 
the canonical ensemble, this representation is exact in the thermodynamic 
limit, but has correction of order N-~ for a finite system of N particles.) 
This is precisely the functional that one will recover in the nonequilibrium 
case from maximizing the entropy subject to prescribed f2 (in a closed 
system with fixed N) or prescribed f2 and f l  (in an open system in which 
one averages over all N), with entropy S given by 

Sx/k - - ~  (N!) 1 f fu log fN d(1 ) .... d(N) 

in the closed system (28) or S=Y~N>~oSN in the open system. (29) Here, 
we use the notation of (i) = (ri, vi) and d(i)-dvidri. The appropriate 
definition of f ,(1 ... n) for a closed system is 

N!/(N-- n)! f fu(l ' '"  N) d(n + 1)-.-d(N) 

while for an open system it is 

[N'/(N-n)! f fN(1 ...N) d(n+ l).. .d(N)] 
N>~n  
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We remark that if one uses the fN generated by the RET (as discussed in 
ref. 6) to construct an f3 from these expressions, this f3 will be the same 
functional of f l  and f2 that the exact f3 is for a nonuniform system at 
equilibrium. 

Finally, we remark that in the case of the whole-space problem there 
may not be equilibrium solutions. Indeed, for a large class of initial 
distributions there are solutions which from the physical point of view 
describe a fluid that "escapes" from any bounded domain as t--, oo. This 
has been shown in refs. 13-15 in the case of the Boltzmann equation, and 
in ref. 16 in the case of a model of the standard and revised Enskog equa- 
tions. In the GET (with no external forces) the same situation occurs, as 
indicated by the property of the Liapunov functional d~ introduced in 
Section 2; of particular relevance is Eq. (18). 

4. L O W E R  B O U N D S  FOR [" A N D  EX ISTENCE T H E O R E M S  

In Section 3 we showed the form of solutions for which F reaches its 
stationary value. Next we want to investigate under what conditions F is 
bounded from below. For simplicity of the exposition we assume 
throughout this section that the external field is absent, i.e., F---0. We 
remark that the existence of a bound from below (uniform both in time 
and for the family ~ of functions in which one seeks solutions to the 
problem) does not constitute a sufficient condition for F (as a function 
o f f )  to reach its minimum value. This is so, in spite of the fact that the 
function on which F can attain its minimum value belongs to the family Y.  
Indeed, in the case of the whole-space problem for the Boltzmann equa- 
tion (where F reduces to the original H-function HB), Toscani (14) 
showed that for the solution, f, HB(f~ ) > HB(M), where pointwise f ~  = 
lim,~ ~ f ( t ,  x +  tv, v) and M is the Maxwellian (determined by the initial 
value) on which, by the Gibbs lemma, HB reaches its minimum [the Gibbs 
lemma states that among all nonnegative functions f that have the zeroth, 
first, and second moments constant, the Maxwellian defined by these 
moments is the only minimum of the functional H ( f ) =  ~ f l o g f ] .  Since 
HB(f)(t)  = g B ( f  # )(t) for all t >~ 0, where f #  (t, x, v) = f ( t( t ,  x + iv, v), we 
see that l im,~ o~ HB(f ) ( t )>  HB(M) and the solution f does not approach 
a Maxwellian as t ~ oo. This kind of behavior 15) is due to escape of fluid 
as t ~  oo from any bounded set in R 3 (local rarefication effect). A very 
similar behavior has been shown for the case of a model of the standard 
and the revised Enskog equation (with Y assumed to be bounded) in 
ref. 16. For  the solutions obtained in ref. 16 it is easy to see that IF(t)l is 
bounded, uniformly in t ~ I-0, oo). However, the solution does not approach 
equilibrium. The above properties of solutions of the Boltzmann or the 
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Enskog equations also indicate that, in general, the monotonicity of HB(t) 
or F(t) is not sufficient to obtain convergence of solutions to equilibrium. 
We note that from a physical point of view the asymptotic behavior of 
solutions, as described above, is not expected from solutions to the 
problem of gas flow within a container or perturbation from equilibrium in 
the whole R 3. However, as pointed out by Grad in (ref. 37, p. 259), in the 
case of the Boltzmann equation "the H-theorem gives no indication that 
there actually will be an approach to absolute equilibrium since it gives no 
clue to the transition from local to absolute Maxwellian." The problem 
is, Grad argues (ref. 37, p. 260), "whether the deviation from a local 
Maxwellian, which is fed by molecular streaming in the presence of spatial 
inhomogeneity, is sufficiently strong to ultimately wipe out the 
inhomogeneity." On the other hand, presence of the collisional transfer of 
momentum and energy implies that the local Maxwellian stage is missing 
in the GET, as well as in the RET [-see(21)]. Thus, we think, the 
difficulties with an approach to absolute equilibrium, present in the case of 
the Boltzmann equation, may well be absent in the GET, including the 
RET. This important topic requires further rigorous study. 

Finally, we note that in ref. 6 [-see the paragraph before Eq. (49) on 
p. 603] only a lower bound of F (see more remarks on this topic later 
in the section) has been used in the statement about the existence of a 
stationary value of the entropy. 

We indicate below that lower bounds for F play a crucial role in 
existence theorems for the generalized Enskog equation. We split the 
Liapunov functional (13) in two parts 

F(t) =- HB(t) + H . . . .  (t) (31a) 

where HB is the kinetic part of F, equal to the usual H-function for the 
Boltzmann equation, and Hoorr is the part of F that describes the effect of 
correlations. Inequality (16) implies that 

HB(t)  -q- ncorr(/) ~< HB(0) (31b) 

Now, the conservation of the mass and the kinetic energy [-use (10) with 
~ =  1 +v 2] implies that for a nonnegative solution of the generalized 
Enskog equation, f(t, r, v), and for all t ~ [-0, ~ ), 

fro ( l + v 2 ) f ( t , r , v ) d v d r = I f  ~ ( l+vZ)fo(r,v)dvdr (32) 
x R 3 x R 3 

where fo(r, v) is a nonnegative initial distribution function such that the 

822/64/1-2-29 
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right-hand side of (32) is finite. Thus, in the case of Q=R3/Z 3, the 
inequality 

y(log y - log z) >/ - z  (33) 

with y = f  and z = e x p ( - v  2) implies that 

gB( t ) >>- --CB > --oo (34) 

uniformly in t s [0, co), where CB > 0 is a constant that depends only on 
f0. In the case of the whole-space problem ( ~ ' 2 = R 3 ) ,  the use of (18) 
together with rather easy computations given in ref. 1 implies that 

I f  r2f(t,r,v) dvdr<<- Cl(T) (35) s u p  
t~ [0, T] ' ) d R 3 •  

where CI(T) also depends on ~IR3• and on SSR3• (I + v  2) 
fo dv dr. As before, (34), with y = f  and z = e x p ( - r 2 - v : ) ,  implies that 

HB(t)>~ -CB(T)  > - o o  (36) 

Note that in the whole-space problem CB(T) depends on T. This is par- 
tially a reflection of the fact that in this case solutions do not approach an 
equilibrium (see also a similar remark at the end of Section 2). 

Combining all the above, we see that for nonnegative initial data 
satisfying 

f f e  (l+vZ+r2)fo(r,v)dvdr<~Co<oO (37) 
x R 3 

HB(t) is bounded from below. We stress that the r 2 term in (37) is 
superfluous in the case O = R3/Z 3. Now, identity (31a) implies that F(t) 
is bounded from below, uniformly on [0, T], if one can show that for 
t~ [0, T] 

H . . . .  ( l ) ~  - - C  . . . .  ( T ) >  - 0 0  (38) 

where C . . . .  (T) is a positive constant. In the case of periodic boundary con- 
ditions a lower bound on F(t) is uniform on [0, oo) when the bound in 
(38) is independent of T. Later in the section, we indicate a class of Y's for 
which (38) holds uniformly for t e  [0, oo) in the whole-space problem and 
in the case of periodic boundary conditions. These Y's approach the RET 
Y as a limiting case. We point out that R6sibois (6) [see the paragraph 
before Eq. (48) on p. 603 of ref. 6 or the paragraph after inequality (11) on 
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p. 1410 in ref. 18] stated that H .... (t) is bounded. However, the arguments 
given in refs. 6 and 18 are not complete. 

Inequality (38), together with (31b), also implies that 

HB(t)<.HB(O)+C .... (T) (39) 

uniformly in t e  [0, T], for any T>0 .  Thus we have proven that for a non- 
negative initial distribution f0 satisfying 

f r o  [l+v2+r2+llogfo(r,v)l]fo(r,v)dvdr<~Co<oO (40) 
x R 3 

inequality (38) yields the following a priori bound for a nonnegative 
solution f(t, r, v): 

sup Ifo [l+v2+r2+ll~176176 
t E [ O , T ]  •  

(41) 

As before, in the case of periodic boundary conditions (g2 = R3/Z3), the r 2 
term in (40) and (41) is superfluous. 

Estimation (41) places the generalized Enskog equation in the 
framework of the DiPerna-Lions method (17~ developed for the Boltzmann 
equation. Let us observe that in the case of the Boltzmann equation 
H .... = 0; thus the bound (38) is trivially satisfied. 

A priori estimation (41) has a very important physical interpretation. 
It implies that there can be no concentration of density in the system, in 
a sense that inequality (43) below makes precise. [Such concentrations 
would not be expected in an exact description of a hard-sphere system, 
except at close packing, since the hard cores prevent particles from overlap- 
ping, and only at close packing will the lack of thermal motion lead to the 
frozen-in configurations characterized by ~5-function shells describing 
n(t, r).] From the fact that 

sup Ifn f ( t ' r ' v ) l~176176 
t~  [0, T ]  x R  3 

(42) 

we obtain that the family of densities {n(t, r): t~ [0, T]} is uniformly 
integrable, i.e., to each e > 0 there corresponds a 6 > 0 such that 

fEn(t, r) dr < e (43) 

whenever t~ [0, T] and vol(E)< 3. In other words, (43) implies that there 
can be no large concentrations of n(t, r) in arbitrary small domains. As 
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before, T can be set to oo when the bound in (38) is independent of T. We 
observe that in the case of the Boltzmann equation a similar bound to (43) 
follows directly from the H-theorem, while in the GET" we needed an 
additional condition (38) to satisfy (43). 

Now we want to indicate several classes of problems for which the 
bound (38) holds uniformly in t e  [0, T], with T =  oo in some cases. The 
bound (38), through estimation (41), is intimately related to the problem 
of finding solutions for the GET. In the proof of existence theorems for the 
GET, (1) one needs boundedness of Y, in addition to the symmetry condi- 
tion (8). More precisely, Y in ref. 1 is assumed to be bounded on a set of 
functions having bounded mass and energy. In this paper, and especially 
throughout this section, we follow ref. 1 in assuming that Y is bounded. We 
also indicate a class of problems for which the last condition holds. 

Case I. If the density function n(t,r) is bounded by Cn(T), 
uniformly in tE [0, T] and reO,  then (38) is satisfied with a constant 
C . . . .  ( T )  also depending on Cn(T) and ~e• (1 + v 2) If(t,  r, v)l dv dr. 

The proof follows from a simple integration of (14). We observe that 
even in the case where n(t, r) is bounded uniformly in t E [0, oo ), and r ~ s 
the bound in (38) may be valid only for finite T. We note that in the spa- 
tially homogeneous case, the Mayer cluster expansion (6) is convergent for 
small enough densities. Therefore, Y's computed in the SET and the RET 
are bounded, thus implying (38). We believe that (6) should be convergent 
for small densities also in the nonhomogeneous case, although we cannot 
provide a rigorous proof of this fact except for densities coming from non- 
uniform equilibrium systems, following Ruelle (ref. 38, Chapter4). We 
stress, however, that even when one is not concerned with the convergence 
of the series representing Y in the SET or the RET, the argument that uses 
the boundedness of the density is not complete. Indeed, presently, we do 
not know in general whether the GET, including the RET and the SET, 
preserves this property with evolution of time. On the other hand, in the 
absence of external forces and when the initial value fo does not depend 
on r, the generalized Enskog equation preserves spatial homogeneity with 
evolution of time, whenever Y is translationally invariant in position. 
Hence, in the homogeneous case the argument that uses the boundedness 
of density is a complete one. We also add at this point that in the 
homogeneous case, the RET and the SET are equivalent (ySEV = yRET). 

The next case reveals a surprising property, connecting together the 
kinetic and the correlational parts of F for the whole-space problem 
(~2 = R  3) (see ref. 1, p. 498). 

Case 2. Suppose that f ( t ,  r, v) is a mild nonnegative solution of (9) 
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[ref. 1, Eq. (2.12) for the definition of a mild solution] in the case g2 = R 3 
with a nonnegative initial distribution fo satisfying condition (40). Then the 
bound (42) implies (38). In fact, (42) is equivalent to the boundedness of 
k H .... (t)] uniformly in t ~ [0, T] and for any T >  0. The above result is true 
for each bounded and symmetric Y of the form (7). 

Case 3. Suppose that fo ~> 0 satisfies (40) with f2 = R 3 (the whole- 
space problem). If either (a) 0 < T <  oo is arbitrary and 

Ilfoll~,(R~x ~> ~ f f  Jfol dvdr 
R 3 x R 3 

is sufficiently small (small initial mass) or (b) T >  0 is sufficiently small and 
]] fall L'(R3• R3)is arbitrary, then the bound (38) holds. 

This result is essentially contained in Theorem 2.1 of ref. 1. In fact, the 
main idea of the proof of Theorem 2.1 is based on the fact that ]H .... (t)] 
is bounded uniformly for t~ [0, T] under either the assumption (a) or (b). 
The bound depends on T and the constant Co in (40). From a physical 
point of view, the necessity of conditions (a) or (b), in particular when Y 
depends on velocities, might be expected to follow from the fact that 
velocity correlations may induce concentrations of the density at later 
times, even if initially such concentrations were absent. Hence, [H .... 1 may 
become unbounded at such later times [since the negation of (43) implies 
the negation of (38)]. On the other hand, a small enough initial mass will 
allow fluid to disperse quickly, even in the presence of velocity correlations, 
although such correlations can eventually have an effect on the long-time 
mass distribution. This possible unboundedness of ]Hr after sufficiently 
long times is closely related to the fact that in the dilute-gas limit, velocity 
correlations do not prevent the Boltzmann equation from becoming an 
increasingly accurate description of transport processes as one approaches 
the dilute-gas limit, despite the fact that the correlations can make them- 
selves felt on sufficiently long time scales for arbitrarily small na 3. In 
particular, the Boltzmann-equation expressions for transport coefficients 
become exact when Y2 = R 3 as na3~  O, although slowly decaying velocity 
correlations result in coefficients that are nonanalytic in n about n = 0. (3~ 

Another interesting case of (38) is provided by the whole-space 
problem with the grazing collisions removed from the scattering kernel of 
E(f) :  We have the following situation. 

Case 4. Suppose that fo satisfies condition (40) and for some 7 > 0 
the scattering kernel (e, v - w )  in E ( f )  is replaced by 

z~x <~, v-w> 
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Here )~ is the characteristic function of the set {(s, v, w)eS  2 x R3x R3: 
(e, v -  w)~> 7} and y > 0 is arbitrary small. Then the bound (38) holds and 
is independent of time. On the other hand, because of (36), the lower 
bound on F(t) depends on T, for T >  0 arbitrary but finite. Inequality (18) 
for the functional g(t), defined in (19), plays a crucial role in the proof. 
From a physical point of view it means that we eliminate collisions (called 
the grazing collisions) that result in small changes of v' and w' as compared 
with their precollisional values v and w, respectively. We point out that a 
similar cutoff has been common in the case of the Boltzmann collision 
operator. Indeed, the restriction of the deflection angle 0 to 0 ~< 0 ~< re/2 - 7 
for some small y > 0 results in elimination of the grazing collisions. We 
remark, however, that the angular cutoff in the case of the Boltzmann 
equation was needed to handle a singularity resulting from an infinite 
range of interactions of the inverse power potentials. Here, since we con- 
sider only hard spheres, such a singularity does not appear. For technical 
reasons, however, we still need the truncation in the scattering kernel to 
obtain an existence result global in time with an arbitrary initial mass and 
bounded Y of the form (7). 

For the vacuum solutions, already mentioned in the beginning of this 
section, we have the following case. 

Caso 5. Suppose that f(t, r, v) is a nonnegative vacuum solution 
obtained in refs. 31 and 16 in the case of a bounded Y that is independent 
of velocities [for example, of the functional form as in (4) or (5)]. Then 
(38) holds. In fact, one can show that Hcorr(t ) is bounded uniformly in 
t e [0, or). It is worth pointing out that vacuum solutions obtained in 
ref. 31 can have infinite mass and be singular in velocities. (32) 

In the points 1-5 presented above, we have considered various condi- 
tions imposed either on initial states (points 3 and 5), or on the range of 
possible collisions (point 4). In point 1, the a priori bound on density n(t, r) 
was enough for (38) to hold. A particular form of Y, except, of course, for 
the symmetry and boundedness, did not play any role in establishing (38) 
in 1-5. With regard to points 1-5, there are two notes of criticism. First, 
the conditions imposed in 1-5 are usually of very restrictive nature, in par- 
ticular, when one seeks solutions global in time with arbitrary initial mass. 
Second, Y's in the SET and the RET are of very special form [see (4)-(6)],  
not yet accounted for, in points 1-5. It is therefore important to consider 
a class of problems that would be free of the above criticism. 

For  i ~> 2 consider G of the form 

G=012 l +k23 (k_  2)! fadr3...;adrkn(3).. .n(k) V(12 L 3 . . . k  ) =  (44) 



Generalized Kinetic Equations 457 

with the same notation as in (6) and with the convention that G = O12 for 
i =  2. The case i = 2 corresponds to the Boltzmann-Enskog equation, i.e., 
the case when Y-= 1. We remark that, except for i =  2 and i =  3, we cannot 
prove that the contact value Y obtained from G in (44) is nonnegative for 
f>~0. This property, however, is not required in Theorem 1 and 
Corollary 2 below. Let u(t, r) be the fluid velocity defined by 

f .  
n( t, r) u(t, r) = JR3 vf(t, r, v) dv 

We have the following result. 

T h e o r e m  1. Suppose that (1 + [v l ) f ( t , r , v )  and 
(t, r, v) are integrable over [0, T] x s • R 3 and such that 

~ + ~ ( ~  = o 
3t or 

(45) 

(l+lvt)(af/ar) 

(46) 

Then for Y, obtained from G given in (44), the following identity holds: 

m . . . .  (t) = -- f~ n(t, rl) S . . . .  (f5, rz) (IF 1 -[- fg2 n(0,  Yl) S . . . .  (0, r,) dr, (47) 

where 

S .... (t, r l ) = k ~ 2 ~ . j  dr2"" j  d r k n ( 2 ) " ' n ( k ) V ( l ' " k )  (48) 

and V(1.-.k) is the sum of all irreducible Mayer graphs which doubly 
connect k particles. 

Ske tch  of  the Proof. Following the ideas Similar to those presented 
in refs. 7 and 22 [in particular, Eqs. (14)-(18) of ref. 7 and (3.17)-(3.19) of 
ref. 22] and using (46), the symmetries of V(12I 3 . . -k )  and V(1 . . .k) ,  and 
the translational invariance of G in (44) 

G(r l+r ,  r 2 + r l n ( t , . ) ) = G ( r l , r z l n ( t , . + r ) ) ,  forany res (49) 

one obtains the equation for Hoorr(t): 

d H . . . .  ( t ) =  d fo fr 63~rl dt -dtt  n(t, r l )  S . . . .  (t, r l )  dr I + (t, rl) dr 1 

Here, q~(t, ri) is some multilinear function of n and nu, with the dependence 
on t and r I only through n and nu. This, together with the integrability 
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assumptions of (1 + ]vl) f( t ,  rl, v) and (1 + [vl)(?f/Or~)(t, r~, v), implies that 
the second term on the right-hand side of the last equation is zero, thus 
yielding Eq. (47). 

We observe that (47) holds for f ( t ,  r, v) that are not necessarily solu- 
tions of the corresponding Enskog equation [with Y obtained from G 
given in (44)], as long as they satisfy the continuity equation (46). We also 
remark that (47), combined with (13) and (31a), implies that 
dH .... (t)/dt = I(t), i.e., for Y obtained from G as in (44), the dependence of 
F(t), defined in (13), on times prior to time t is superficial. Formally, (47) 
holds also for i = o% and in this case S .... has the functional form of the 
correlational entropy density for hard spheres at equilibrium (see, for 
example, ref. 11). Furthermore, for i =  0% G in (44) becomes the pair 
correlation function in a nonuniform equilibrium state at density n, thus 
being nonnegative for f~>0. We recall that V(12)=f12 and V(123)= 
f~2fz3f~3, where fu is the Mayer function between particles i and j. For 
V(1 . - .k)  with k>~4, see, for example, ref. 11. On the same purely formal 
level, the one-particle Liapunov functional generated by the G3 described at 
the end of Section 3 can be shown to have the functional form given by 
(48) (with i =  oo), but with the Mayer function replaced by a velocity- 
dependent generalization, as described below Eq. (4) in ref. 39, and in 
detail in ref. 25. Because this representation manifestly involves only quan- 
tities evaluated at time t, it gives rise to a Liapunov functional that depends 
on functions describing a microstate at the same time t only, just as in the 
case of the RET. 

Ultimately one would like to consider rigorously the case of i =  oo in 
(44); the fact that Theorem 1 holds for any finite i seems to us to be a very 
promising result in this direction, going considerably beyond previous 
treatments. 

C o r o l l a r y  2. Suppose that f ( t , r , v )  satisfies the conditions of 
Theorem 1. Then for all t e [0, T] 

i 

[H . . . .  (t)l <~ C(i) ~, (llf(t)ll k el(a• R3)+ [1 f(0)ll~,(e • R~)) (50) 
k - - 2  

where 

IIf(t)llL~<~l = ff~ • I f ( t ,  r, v)l dv dr 

The proof of Corollary 2, for each i>~ 2, follows immediately from 
Theorem 1 after simple integrations of (48) with respect to drz . . .drk  for 
2~k<<,i. It is important to observe that for each i>~2, C(i) does not 
depend on T. 
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The result of Corollary 2 gives the bound (38) for H .... . Its use in 
providing the estimation (41), needed in existence theorems, or a lower 
bound for F(t), is limited to the cases for which the contact value Y 
obtained from G in (44) is nonnegative for f~> 0. As noted earlier, except 
for i = 2 and i = 3, we cannot prove that this condition is true for i/> 4. We 
have the following situation. 

Case 6. Suppose that fo~>0 satisfies (40) and consider Y obtained 
either from G given in (44) for i = 2  or i=3 .  Then F(t) is bounded 
from below, uniformly for t E [0, T]. Furthermore, in the case of periodic 
boundary conditions, (34) implies that a lower bound of F(t) is uniform for 
t~  [0, oo). 

We observe that point 6 provides a class of Y's which are bounded. 
Furthermore, in contrast to points 1-5, such Y's imply that 
supt~ t0,oo) tF(t)l is finite in the case of periodic boundary conditions. 

The next theorem (2) is a basic existence result for the generalized 
Enskog equation with Y given in point 6. 

T h o o r e m  3. Assume that ~2=R3/Z 3 or g2=R 3 and that fo>~0 
satisfies (40). Then for each T > 0  there exists f ( t ,  r, v) for which condition 
(41) holds and such that for almost all (r, v )~O • R 3 

;s f # ( t , r , v ) - f # ( s , r , v ) =  E ( f )  # (2, r,v) d2, O < s < t ~ T  (51) 

where E ( f )  is the generalized Enskog collision operator with Y given in 
point 6, and f # ( t ,  r, v)= f( t ,  r + tv, v). 

We note that the case i =  3 of Theorem 3 extends the result of Y= 1 
(i.e., when i - -2 )  previously obtained by Arkeryd, (34) Esteban and 
Perthame, (3s) and Arkeryd and Cercignani. (36~ Furthermore, it can be 
shown in a similar way to the proof of the original result that an analog 
of Theorem 1, and ultimately Corollary 2 and Theorem 3, holds for any 
finite i when all nonnegative terms [i.e., the terms containing odd numbers 
of the Mayer functions in V(12 I 3 ... k)]  are removed from G in (44). 

We end this section with some further implications of bound (42) [a 
consequence of (38)]  for the inverse problem that arises naturally in the 
density functional approach in the theory of nonuniform fluids. (19'2~ In 
particular, this approach has been used in ref. 6 to derive formally the 
revised Enskog equation from a special grand canonical ensemble. The 
crucial assumption in the density functional approach, as well as in the 
R6sibois derivation, is that every density n(.), which is the symmetrized 
one-particle reduction of a probability distribution function, is an equi- 
librium one-particle density at some external potential U(.). This is the 
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inverse problem, also equivalent to the existence of the map n(-) ~-~ U(-). 
If such a map exists, then U(.) becomes a functional of n(.). Thus, the 
activity function z(.) introduced in ref. 6, z ( - ) ~  e x p [ - f l U ( . ) ] ,  becomes 
also a functional of n(.). In ref. 3a (Theorem 9.1, p. 115) it has been shown 
that the condition 

fS(r.a/2) n(z) dz ~< 1 (52) 

for any r~f2 is a necessary condition for the inverse problem with 
hard-core potentials to have a solution. By taking E=B(r ,  a / 2 ) - { z  el2: 
Iz-rL <~ a/2} and e = 1 in (43), we see that (43), and thus (52), are satisfied 
with evolution of time when we choose the diameter a of the hard sphere 
small enough. Such adjustments of a are always possible as long as the 
bound (42) is independent ofa. This is the case of Theorem 1. The case of 
the full revised Enskog equations hinges, among other things, on the con- 
vergence of the Mayer cluster series for g [see (6)]. As remarked earlier, 
relation (47) of Theorem 1 holds formally also for i =  o% thus, in principle 
at least, making bound (42) independent of a. In the homogeneous case 
(n does not depend on r), the smallness of a is related to the smallness of 
4/3n(a/2) 3 n, which is clearly less than one. Indeed, it is universally agreed 
(although not proved) that the close-packing density corresponds to 
4/37z(a/2)3n = n/~i-8 ~0.74048 (see, for example, ref. 21, p. 293). Thus, a 
stronger condition than (52) is required. We think that bound (38) might 
usefully serve as such a condition. Our motivation for this comes from 
ref. 3b, where the sufficient and necessary conditions to the inverse problem 
were given for a system in which some functionals of probability distribu- 
tions were finite [see (3.6), p. 478 of ref. 3b]. In our case, we propose that 
bound (38) be the test for admissible models considered in the GET. We 
recall that (38) guarantees that F is bounded from below (in fact, bounded, 
in the case of the whole-space problem) and also implies (42). 

5. A LOCAL V E R S I O N  OF r(t) FOR THE GET 

Another important property of the GET is that it has a local version 
of the Liapunov functional F. In the case of the RET such theorems have 
been proven in refs: 7 and 22. In ref. 23 such theorems have been obtained 
for various generalizations of the revised Enskog equation beyond the 
hard-core potential. 

For a nonnegative solution of the generalized Enskog equation 
f ( t ,  r, v), we define a local Liapunov functional 7(t, r) as follows: 

n(t, r) 7(t, r) = 3f(t, r, v) logf( t ,  r, v) d r -  i(s) ds (53) 
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i(t)= �89 jJjR3•215 2 Ef(t, r--at ,  w) Y(t, r, v', r - a t ,  w' l A f )  

- f ( t ,  r + at, w) Y(t, r, v, r + at, w [ A f ) ]  

x f ( t ,  r, v)(e, v - w)  dE dw dv (54) 

Proceeding in a similar way as in the proof of (15) and (3.8) of ref. 22, one 
obtains 

#(ny) 0 J  GET 
- -  - - = r r  ~ (55) 

0t + Or 

where 

1 a 2 JJj Y(t, r, v, r + ae, w) I A f )  o -GET= --i(t)+-~ R3xR3• 2 

X f ( t ,  r, v) f ( t ,  r+ae, w) 

x log~f( t ' r - 'v ' ) f ( t ' r+ae'Ww--~))](e ,v-w)d~dwdv 
[_ f ( t ,  r, v ) f ( t ,  r + ae, 

and 

j G E T  = fR 3 

(56) 

Iv--u(t ,  r) ] f ( t ,  r, v)log f ( t ,  r, v)dv 

la3  
+-~ [0,1]xR3•215 Y(t ,r--2ae, v , r+ (1 - -2 )ae ,  w l A f )  

x f ( t ,  r--2ae, v ) f ( t ,  r+ (1- -2)  ae, w) 

lo f ( t '  r - 2ae, v') x g ~ ( ~ , - ~ - f - ~ a e , ~ ( e , v - w ) e d e d w d v d 2  (57) 

The change of the variables (v, w) ~ (v', w') and e ' =  -~  in the first 
term of i(t), together with the inequality y(log y -  log z ) ~ > y -  z for y > 0 
and z > 0, implies that 

0 "GET ~ 0 (58)  

When F(t) can be considered as an H-function (see the discussion in 
Section 2), inequality (58) and Eq. (55) suggest that s(t, r) =- - ? ( t ,  r) can 
be viewed as a generalization of the entropy density for the GET with 
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__aGZT as a nonnegative entropy production, and __jGET linked to an 
entropy flux. We want to point out that only symmetry (8) of Y was used 
to derive Eq. (55) and inequality (58). We also observe that -cr aET has the 
same functional form as in the RET, except, of course, for the much more 
general form of Yused in the GET. Now, for Y= yRET, (55) reduces to the 
equation already derived in refs. 7 and 22, with the entropy production 
obtain in refs. 7 and 22 being equal to the -or GET of formula (56). Finally, 
integrating n(t,r) 7(t,r) over ref2, we obtain F(t), as defined in (13), 
together with inequality (16). Hence, Eq. (55) with inequality (58) is a local 
formulation of the Liapunov functional F. 
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